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Abstract  Climate change has an impact on forest fire pat-
terns. In the context of global warming, it is important to 
study the possible effects of climate change on forest fires, 
carbon emission reductions, carbon sink effects, forest fire 
management, and sustainable development of forest eco-
systems. This study is based on MODIS active fire data 
from 2001–2020 and the influence of climate, topography, 
vegetation, and social factors were integrated. Temperature 
and precipitation information from different scenarios of the 
BCC-CSM2-MR climate model were used as future climate 
data. Under climate change scenarios of a sustainable low 
development path and a high conventional development path, 
the extreme gradient boosting model predicted the spatial 
distribution of forest fire occurrence in China in the 2030s 
(2021–2040), 2050s (2041–2060), 2070s (2061–2080), and 
2090s (2081–2100). Probability maps were generated and 
tested using ROC curves. The results show that: (1) the area 

under the ROC curve of training data (70%) and validation 
data (30%) were 0.8465 and 0.8171, respectively, indicat-
ing that the model can reasonably predict the occurrence of 
forest fire in the study area; (2) temperature, elevation, and 
precipitation were strongly correlated with fire occurrence, 
while land type, slope, distance from settlements and roads, 
and slope direction were less strongly correlated; and, (3) 
based on future climate change scenarios, the probability of 
forest fire occurrence will tend to shift from the south to the 
center of the country. Compared with the current climate 
(2001–2020), the occurrence of forest fires in 2021–2040, 
2041–2060, 2061–2080, and 2081–2100 will increase signif-
icantly in Henan Province (Luoyang, Nanyang, Sanmenxia), 
Shaanxi Province (Shangluo, Ankang), Sichuan Province 
(Mianyang, Guangyuan, Ganzi), Tibet Autonomous Region 
(Shannan, Linzhi, Changdu), Liaoning Province (Liaoyang, 
Fushun, Dandong).
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Introduction

Natural and human activities influence climate change; 
global atmospheric CO2 concentrations have been increasing 
at an accelerated rate, and average global surface tempera-
tures by 1.1 (0.9–1.2) ℃ over the period 2011–2020 com-
pared to 1850–1900 (Liu and Li 2019),Climate warming has 
become a serious global problem in the 21st century, with 
the most obvious warming trend in the northern hemisphere 
in the middle and high latitudes (Lucht et al. 2002). China 
is a sensitive area for global climate change, and average 
land warming is faster than the global average (Liu et al. 
2004). Forests have a considerable impact on terrestrial 
ecosystems, and are important in carbon sequestration and 
oxygen release, landscaping, and global warming mitigation 
(Baskent and Keles 2009; Qiu et al. 2020). However, forest 
fires are one of the most destructive events to forest ecosys-
tems, one of the major sources of greenhouse gas emissions 
(Naderpour et al. 2019) and negatively affect erosion rates 
and surface water runoff (Wittenberg et al. 2014; Kastridis 
et al. 2022).

In China, wildfires occur frequently, destroying forest 
resources while also reducing their function as carbon sinks 
and their sustainability (Adams and Shen 2015).

Climate is an important factor on forest fire occurrence, 
and a warming climate will increase their frequency and 
intensity (Clark 1988; Neary et al. 1999). At different spa-
tial units, climate warming changes the distribution, com-
position, and productivity of forests (Johnstone et al. 2010; 
Margiorou et al. 2022).

Future climate warming may to outpace human activities 
and will play a greater role in fire activities (Zhang et al. 
2016). Studies show that warming has increased the growing 
period in China, especially on the Qinghai-Tibet Plateau and 
in the northern regions (Zhao and Shu 2007). Warmer and 
drier climates will enhance the effects of fires and increase 
forest loss (Liu et al. 2010). Temperature and precipitation 
are key factors in fire activity (Ma et al. 2020). Weather 
affects the fire triangle, i.e., oxygen, heat, and fuel. The rise 
of temperatures, accelerated wind speeds, increased forest 
combustion activities and increased forest productivity due 
to climate warming will have a significant impact on the 
occurrence of forest fires (DeLucia et al. 1999; Hu et al. 
2012; Yue et al. 2020). Warming also leads to an increase in 
the frequency and intensity of extreme weather events, caus-
ing massive vegetation damage and mortality and provid-
ing an accumulation of combustible material for forest fires. 
Global warming also increases the frequency of lightning 
and wildfires (Price and Rind 1994).

China’s surface temperature will continue to rise in this 
century, with more warming in the north than in the south, 
and more in winter and spring than in summer and autumn 
(Zhao and Shu 2007). As the global climate continues to 

warm, predicting the occurrence of forest fires under future 
climates is of practical significance for the formulation of 
prevention and management measures (Sun et al. 2014). At 
present, research on climate change impacts on forest fires 
in China is mainly carried out at regional scales (Wu 2020), 
and most are "climate/meteorology-forest fire" correlations 
(Li et al. 2000, 2011). There is an absence of research on 
climate change-driven future forest fire simulations on a 
national scale. Therefore, this research will: (1) establish 
the relationship between forest fire occurrence and climate, 
vegetation, topography and social-humanities based on the 
eXtreme Gradient Boosting (XGBoost) model; (2) study 
the response to forest fires under the background of climate 
change; and, (3) simulate the occurrence of forest fires in 
China under different future climate scenarios.

Materials and methods

General description of the study area

China has diverse forest ecosystems, complex topography, 
and high terrain in the west and low in the east. In com-
parison with other countries, the total forest resources is 
small and per capita possession low (Shao et al. 2022a). In 
this study, China has been divided into the following eight 
eco-geographical zones according to climate types (Fig. 1) 
(Shaohong et al. 2010):

Active fire data and other data

Moderate resolution imaging spectroradiometer (MODIS) 
active fire data have the advantage of wide spatial and tem-
poral coverage and can be shared freely worldwide. It is 
an effective data program for characterizing large-scale fire 
conditions (Hantson et al. 2013). In this study, MODIS data 
are obtained from NASA (Davies et al. 2009). The dataset 
contains information on the date of occurrence, latitude, and 
longitude, and confidence level with 1000 m resolution. Fire 
active points with a confidence level greater than 80% were 
selected. The Digital Elevation Model data population and 
Gross Domestic Product came from the Resources and Envi-
ronment Data Center of CAS (Liu et al. 2005; Xu 2017). The 
datasets for roads and residential areas were downloaded 
from the National Geographic Information Resource Cata-
log System (Jiang 1999). Based on the DEM data, slope 
and aspect were extracted using ArcGIS 10.4 software. 
For vegetation data: the Chinese vegetation cover map was 
used (Ran et al. 2012), with a spatial resolution of 1 km and 
17 classification systems. This dataset maintains the over-
all accuracy of China’s forest land cover and increases the 
attribute information with the fusion of multi-source infor-
mation and land cover data (Ran et al. 2012). The object of 
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this study is to forest active fire ignitions. Six forest types 
were studied: evergreen coniferous, evergreen broadleaf, 
deciduous coniferous, deciduous broadleaf, mixed species, 
and shrub forest. A large sample of 255,697 fire points and 
an equal number of non-fire points were used to construct 
the sample set, distributed in a 7:3 ratio for training and vali-
dating the model (Shao et al. 2022b). Temperature data were 
obtained from He et al. (2021), and a new high-resolution, 
monthly gridded temperature dataset with a 1-km resolu-
tion was obtained by the Gaussian process regression (GPR) 
method based on weather station data divided into monthly 
mean, maximum, and minimum temperatures. Precipitation 
data were obtained from Qu et al. (2020), consisting of a 
monthly precipitation interpolation dataset calculated using 
the climate data spatial interpolation software Anusplin with 
a spatial resolution of 1 km from more than 2400 meteoro-
logical stations.

Data for different carbon emission scenarios were 
obtained from the World Climate website (Eyring et al. 
2016; Hurtt et al. 2020).

The correlation coefficients of simulated and observed 
temperatures and precipitation from 1850 to 2005 by the 
BCC-CSM2-MR model were 0.86 and 0.73, respectively, 
which have good simulation ability (Xin et al. 2019).

The BCC-CSM2-MR climate model with a resolution of 
2.5 min was selected. The SSP126 (sustainable low develop-
ment pathway) and SSP585 (high conventional development 

pathway) for different scenarios were used to simulate 
future forest fires in the periods 2021–2040, 2041–2060, 
2061–2080, and 2081–2100. The data were re-sampled at 
a spatial resolution of 1 km for different future climate sce-
narios and the raster data extracted based on the Chinese 
vector boundary map.

Technical workflow

The technical flow chart of this study is shown in Fig. 2. (1) 
The spatial distribution of forest fire occurrence in China 
under current climate conditions was analyzed and forecast 
based on MODIS fire product data from 2001–2020, com-
bined with meteorological, vegetation, topographic, and 
human activity data; (2) the XGB model was used to iden-
tify the influence of these factors on forest fire occurrence 
and to establish the relationship amongst each factor; (3) the 
extreme gradient boosting model was used to identify the 
influence of factors on forest fire occurrence, establish the 
relationship between each factor and the occurrence of forest 
fires, construct a forest fire prediction model, and evaluate 
the accuracy of model prediction using Recall, F1, and AUC 
evaluation indexes; and (4) based on the BCC-CSM2-MR 
climate model, greenhouse gas emission scenarios SSP126 
and SSP585 were selected to build models to predict and 
map the risk of forest fires over the periods previously 
described under future climate change scenarios.

Fig. 1   Geographic zones 
of China (R1: Temperate 
grasslands;R2: Temperate 
deserts; R3: Cold-temperate 
coniferous forest; R4: Temper-
ate coniferous and deciduous 
broad-leaved mixed forests; 
R5: Warm temperate deciduous 
broad-leaved forest regions; R6: 
Alpine vegetation zone of the 
Qinghai—Tibet Plateau; R7: 
Subtropical evergreen broad-
leaved forest; R8: Tropical 
monsoon rain forest)
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XGBoost (extreme gradient boosting)

The XGBoost model (Fig. 3) uses the classification and 
regression tree (CART) as the base classifier decision tree. 
A gradient boosting method ( weak learners to strong learn-
ers) was used for additive training to combine multiple 
individual classifiers into an integrated classifier to improve 
accuracy and speed (Chen and Guestrin 2016). Feature split-
ting was performed by continuously adding decision trees 
to the model, and the residuals of previous predictions were 
fitted with the new functions formed by the added trees. 
The results of all tree predictions were summed as the final 
prediction (Chen and Guestrin 2016). The algorithm has 

the advantages of being efficient and flexible, of automatic 
multi-threaded parallel computation, effective control of 
overfitting, and independent of the quality of training data 
(Chen et al. 2020).

The formula is as follows Xu et al. (2021):

where ŷi denotes the predicted value of the model, K the 
number of decision trees, xi is the i-th sample, fk the k-th 
submodel, and F represents the set of all decision trees. The 
optimization rule of the decision tree is to optimize the trees 

(1)ŷi =

K
∑

k=1

fk
(

xi
)

, fk ∈ F,

Fig. 2   Technology workflow in this study
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sequentially starting from the 1st tree and ending with the K
-th tree (Xu et al. 2021).

The XGBoost model is a loss function to measure the 
training error and a regularization term to control the com-
plexity, respectively, as follows (Wang et al. 2020):

where L(�)t represents the objective function of the t-th iter-
ation; ŷ(t−1)

i
 the previous t − 1 iteration value; Ω is a regular 

term; Ω
(

fk

)

 represents the complexity of the k-th tree to con-
trol the complexity of the model from preventing overfitting; 
� and � represent the regular term coefficient to prevent the 
decision tree from being too complex; γ is used to control 
the number of leaf nodes; λ ensures that the fraction of leaf 
nodes is not too large; T represents the number of leaf nodes 
of the model.

The XGBoost classifier was used and the learning rate 
set to 0.1 and number of trees to 1000 for iterative train-
ing. Recall, F1, and AUC were used to verify the accuracy 
of the model (Shao et al. 2022a).

Recall refers to the proportion of the number of correct 
information bars extracted to the number of information 

(2)L(𝜙)t =

n
∑

i=1

l
(

yi, ŷ
(t−1)

i
+ ft

(

xi
)

)

+ Ω
(

fk
)

,

(3)Ω
(

fk
)

= �T +
1

2
� ∥ � ∥2

bars in the sample, and the formula (Syafrullah and Salim 
2011):

The F1 value is used to evaluate the classification 
model with the formula (Shaojun et al. 2012):

TP indicates that the sample is correctly predicted as 
positive, FN falsely predicts positive sample as negative, 
and FP falsely predicts negative sample as positive.

The calculation of AUC (area under the ROC curve 
value) considers the classification ability of the classifier 
for both positive and negative cases, and can be used as an 
average indicator of the category imbalance distribution; 
the larger the AUC is above 0.5, the higher the correct 
classification rate (Jin and Ling 2005).

Results

Factor importance and model validation

The learning rate of the XGBoost classifier was set to 0.1, 
and trained for 1000 iterations. The AUC of the training data 
(70%) and validation data (30%) were 0.8465 and 0.8171, 

(4)Recall =
TP

TP + FN

(5)F1 =
2TP

2TP + FP + FN

Fig. 3   Schematic diagram of 
XGBoost model
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respectively (Fig. 4). In addition, the F1 and Recall of the 
training data were 78.2 and 84.2%, respectively, and the F1 
and Recall of the validation data were 76.4 and 81.6%.

The largest contributor to the occurrence of forest fires 
was maximum temperature (26.0%), while the remaining 
contributing factors were minimum temperatures (22.4%), 
elevation (15.0%), precipitation (11.7%), forest type (7.3%), 
slope (5.7%), distance from settlements (5.2%), and distance 
from roads (3.9%) (Fig. 5).

Distribution of forest fire occurrence based on current 
climate conditions

As shown in Fig. 6, the red areas have high fire risk prob-
ability, i.e., very fire-prone sites. Both past fire sites and 
predictions under the current climate show obvious spatial 
distribution and clustering characteristics, mainly in the 
southwest and southeast and parts of the northeast. The 
main areas are: (1) southwest: mainly in the southern part of 
Sichuan Province (e.g., Panzhihua City and parts of Liang-
shan Yi Autonomous Prefecture), Yunnan Province (e.g., 
Xishuangbanna and Pu’er City), with high mountains and 
dense mixed coniferous and broad forests, dry and windy 
winters and springs, and occasionally extremely dry weather; 

Fig. 4   Comparison of the 
precision levels of the XGBoost 
model (Recall is the propor-
tion of the number of correct 
information bars, F1 value is 
used to evaluate the classifica-
tion model, AUC is an average 
indicator of the category imbal-
ance distribution)
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Fig. 5   Influences of factors on forest fire occurrence probability

Fig. 6   Active fires observed by MODIS (2001–2020); mapping of forest fire risk using the XGB model based on current climate
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Fig. 7   Prediction of forest fire occurrence in China under the BCC-CSM2-MR scenarios from 2030 to 2090
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Fig. 8   Relative changes in forest fire occurrence between current and future climate scenarios for the BCC-CSM2-MR



1225Prediction of forest fire occurrence in China under climate change scenarios﻿	

1 3

(2) south: Guangdong Province (e.g., Huizhou and Heyuan 
areas), Guangxi Province (e.g., Wuzhou, Hezhou, Yulin), 
Fujian Province ( parts of Nanping City), with rich forest 
resources, considerable intermingling of forests and agricul-
tural land, frequent human activities, and difficulties in fire 
management; and, (3) Heihe City and parts of Daxinganling 
in the northeast, with dense distribution of forest resources, 
relatively flat terrain, and occasional thunderstorms (Gao 
2015). The driving factors in the various regions are differ-
ent and reflect terrain conditions, climate, social economies 
and other factors (Shao et al. 2022a).

China’s forest fire projections under future climate 
change

Figures 7 and 8 show that the spatial distribution of forest 
fires under a future climate scenario is significantly larger 
than the current climate. Higher probability areas are mainly 
concentrated in: (1) southwest China: Guizhou Province 
(Guiyang, Tongren, Zunyi), Sichuan Province (Liangshanyi 
Autonomous Prefecture, Bazhong, Ya’an), Chongqing, and 
Tibet Autonomous Region (Shannan, Linzhi, and Chamdo); 
(2) central China: most of Hunan Province (Changde, 
Yiyang, Hengyang), Hubei Province (Shiyan, Yichang, Jin-
gmen), Henan Province (Nanyang City, Luoyang City, Xin-
yang City); (3) east China: Anhui Province (Xuancheng City, 
Liuan City), Jiangxi Province (Fuzhou, Ganzhou), Zheji-
ang Province (Ningbo, Shaoxing, Hangzhou); (4) Northeast 
China: Liaoning Province (Liaoyang, Fushun, Dandong), 
Tonghua City, Jilin Province. (5): Fuzhou City, Fujian Prov-
ince; (6) northwest Region: Shaanxi Province (Shangluo, 
Ankang City). The probability of forest fire occurrence in 
2090 is slightly higher than in 2030 where the risk in some 
areas of Fujian Province is weaker under the SS585 scenario. 
As shown in Fig. 8, the relative change of SS126 and SS585 
scenarios increased considerably, mainly in Henan Province 
(Luoyang city, Nanyang City, Sanmenxia City), Shaanxi 
Province (Shangluo City, Ankang City), Sichuan Prov-
ince (Mianyang City, Guangyuan City, Ganzi City), Tibet 
Autonomous Region (Shannan City, Nyingchi City, Qamdo 
City), and Liaoning Province (Liaoyang City, Fushun City 
and Dandong City). With future climate changes, the occur-
rence of forest fires in China may expand from the southwest 
and southeast to central and eastern China. Increasing tem-
peratures lengthen the growing season and increase the accu-
mulation of combustible materials. With global warming, 
the number of days of high temperatures and drought con-
ditions increase, precipitation and humidity decrease, wind 
speeds increase, and the fire danger period is extended. Ris-
ing temperatures increase atmospheric evaporation, thereby 
enhancing drought conditions and raising the risk of wild-
fires, especially in forested areas where combustible materi-
als are abundant. Forest fire occurrence frequencies and rate 

of combustion, as affected by climate change, tend to move 
from the south to the center of the country (Wu et al. 2020). 
The northeastern region also extends to the south. Dryness 
of combustible materials in the north due to relatively low 
rainfall and the increase in temperatures leads to enhanced 
evapotranspiration, furthering exacerbating the water deficit 
(Liu et al. 2012). Therefore, the increasing forest fires in the 
north. Global warming affects the spatial distribution and 
combustion characteristics of fire sources which increases 
the probability of forest fires (Wang et al. 2007).

Discussion and conclusions

This study predicts the spatial distribution of forest fire 
occurrences in China from 2030–2100 based on MODIS fire 
point data, historical meteorological, topographical, vegeta-
tion, and social data, combined with temperature and pre-
cipitation data from future scenario data. The results show 
that temperature, elevation, and precipitation are strongly 
correlated with the occurrence of forest fires. As temperature 
increases, it affects relative humidity within a forest, accel-
erating the evaporation of water from combustible materials. 
An increase in temperature will also increase the probabil-
ity of high winds, increasing the probability of forest fires 
and expanding fire spread (Sun et al. 2014). Precipitation 
directly affects the water content of combustible materials, 
and an increase in plant water content reduces the possi-
bility of forest fires (Zhang et al. 2000). Under historical 
climate conditions, it is predicted that the occurrence of for-
est fires in China will be concentrated in the southwestern 
and southeastern parts and the northeastern parts, which is 
consistent with the results of the study using deep learning 
and multi-source data prediction (Shao et al. 2022b). In the 
future BCC-CSM2-MR climate model, the frequency and 
intensity of extreme precipitation are gradually enhanced 
in the higher carbon emission scenario SSP585 compared 
with the lower emission scenario SSP126, mainly in eastern 
China (Kong and Sun 2021; Liu et al. 2021). Summer pre-
cipitation also tends to increase in most areas of the south-
west (Yang et al. 2021). In the BCC-CSM2-MR climate 
model, our prediction results of fire occurrence based on the 
XGBoost model showed fire occurrence probability moving 
from the south to the central part of the country, which is 
consistent with the prediction results of Wu et al. (2020) 
based on the GFDL-CM3 model enhanced regression tree. 
Similar fire point data, (Gu et al. 2020) gave the predicted 
AUC value of 0.73 for forest fires under climate change in 
Jiangxi Province, and in the whole of China, AUC can reach 
0.84. However, due to the complex non-linear interactions 
between weather, vegetation and people (Hu et al. 2021), it is 
difficult to determine the severity and intensity of fires under 
future climate change, one of the shortcomings of this study. 
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Future studies will be carried out on the effects of large-scale 
climate fluctuations on the occurrence of forest fires and 
carbon emissions (Hu et al. 2021). In addition, studies on the 
environmental, ecological and evolutionary effects of forest 
fires will be carried out (Yue et al. 2020).

This study considers the changes in forest fire occur-
rence in China caused by[ different climate scenarios,] 
and that changes in forest age and structure will occur in 
the next 100 years (Qiu et al. 2020). In particular, forest 
resources in China are affected by the government man-
agement policy intervention. Therefore, the results of the 
forest fire risk assessment in China from 2021 to 2100 
only reflect the possible fire risk changes caused by future 
climate change. Forest fire data over a long time series 
and large scales are important for predicting the effects 
of forest fires to climate change. However, spatially and 
temporally explicit historical forest fire data are often diffi-
cult to obtain. Forest fire and climate data and topographic 
factors over 20 years from 2001–2020 were used to predict 
future forest fire occurrence, but short-term climate data 
may not capture the long-term variability in fire-climate 
relationships (Hawbaker et al. 2013). This could affect 
the comparability of fires in the current (2001–2020) and 
future climates (2030–2090). Climate conditions before 
fire occurrence can be assessed in the future. In the con-
text of global warming, the growing season is extended, 
increasing the frequency of forest fires (Wotton et  al. 
2010). Because specific forest fire occurrence models may 
not be widely applicable, when developing such models 
using publicly available data, the versatility of model 
development methods can be enhanced and applied else-
where (Szpakowski and Jensen 2019).

Under future climate change scenarios, forest fire risk 
in China shows an increasing trend, with more areas under 
the high-risk zone. Our study may be considered as a study 
of the long-term probability estimates of fire occurrence in 
China. However, the anthropogenic impact of changing land 
use patterns may influence our results when we strengthen 
the study of the impact of multi-factor simulations and future 
extreme climate events on the spatial and temporal dynam-
ics of forest fire occurrence. Based on active fire data, mul-
tiple factors were combined to identify China’s forest fire 
occurrences under future climate change scenarios, which 
can provide effective reference and data support for Chi-
na’s prediction of future forest fire occurrence, prevention 
and mitigation, and the development of sustainable forest 
management.
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